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THE DETERMINATION OF RES

ARCH OCTANE NUMBER OF GASOLINE FUELS

BY AN OCTANE ANALYZER

I. INTRODUCTION

The octane number of tuels has been determined. historically, by ASTM-developed engine
rating methods, ASTM D 2699 is the procedure used for determining the Research Octane
Numbers (RON): ASTM D 2700 is the procedure emploved for determining Motor Octane
Numbers (MON). Both of these methods require essentially the same engine which is operated
under differing conditions for determining either the RON or the MON value. Over the vears.
difficulties have been associated with the continnal maintenance requirements for the
Cooperative Fuels Research (CFR) engine. calibration requirements of the engine and
detonation-senzing devices. and cooperative testing needed for establishing precision and
engine test severity,

Because of the need for an improved. more reliable. and less complicated method for assess-
ing octane quality. the potential for utilizing the Foxboro Laboratory Octane Analyvzer was in-
vestigated further,

Suecess with the On-Line Octane Analvzer. developed by the Gulf Research and Develop-
ment Company' and licensed to Foxboro Analvtical. has led to an extension of the original
design to cover the new Foxboro Areas Model 81-1. Laboratory Octane Analyzer, The Madel
81-1, Analvzer weighs approximately £30 Ih and has the dimensions of 24 in. by 24 in. by H
in. It requires 115 or 220V ace, 30 or 60 Hz power. 60 1/in.2 dry clean air. and 100 Ihin.?

nitrogen gas,

A Foxhboro Maodel 81-1. Octane Analvzer equipped with Areas Microcomputer system was
used. The method of analysis which was used simulates the partial oxidation reactions that oc-
cur during engine determinations, These reactions are monitored and then correlated with oc-
tane ratings. The reactions of interest are precursory to actual combustion and are ~elf-
initiating and ~elf-estinguishing. This oxidation reaction is referred to as “eool flames.”™

Chnton. R M. aned Puzniak. 1.0 Analvzing Process Octane Onebine.” Gull Bescarch & Development Compatn listrumentation

Teehpuologs Jals 1975, pp 17250,




The basie measurement consists simply of injecting a small quantity (10 gl) of sample fuel
into a flowing air stream and then measuring with a thermocouple the magnitude of the resul-
tant exothermic evemt after the full-air mixture enters the reaction chamber. The instrument is
arranged so that the peak temperature generated during each single reaction is monitored.
These peak temperatures have heen shown to have good correlation with the research octane
number of gasoline fuels. the reaction hecoming more severe as the research octane number

decreases,

The flow system schematie and analvzer reactor diagram for the Model 81-L. are provided as

Figures 1 and 2.2

Il RESULTS AND DISCUSSIONS

Three Coordinating Research Couneil (CRC) high-sensitivity. full-boiling-range unleaded
reference fuels were used 1o determine the day-to-day repeatability of the apparatus. The stan-
dard deviation and the average results obtained with four runs are shown in Table 1. The
measured results are given in Table 2.

Table 1. Standard Deviation (0) and Average (x) Values at 299.1° (.

~

RON Peak Height Peak Area Induction Time (min)
X o X o X o

91.6 2508 35 5.51 0.05 0.53 0.01
96 1026 % 3.91 0.15 0.68 0.01

100 193 25 2.28 0.13 0.89 0.01

In general. the peak height and peak area decreased and induction time inereased when
the research octane number increased. The peak height and peak area were also inereased and
the induetion time was shorter at higher reactor temperatures compared with lower reactor
temperatures, The results obtained during the various runs are discussed as follows;

a. Ron vs Peak Height. The linear plot of Research Octane Number and peak height
shows that the peak height gives the best correlation among the three e peak height. peak
area. or induction time) measurement modes for both reactor temperatures used (see Table 3).
The plot of peak height (at 303.1° €} vs RON is shown in Figure 3,

“Operatien anel Masntenanee Manual of Laborators Ovtane Anabyzer”” Foshoro Analvtical, 19480,
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Figure 3. The correlation of RON with relative peak height of Octane Analyzer.




Table 3. The Correlation Coefficients of Octane Number vs Induction Times. Peak
Heights, and Peak Areas.

Octane Induction Time @ Peak Area @ Peak Area @

Number 2091 ° ¢ 303.4° € 299.4° ¢ 303.4° C 299.4° (¢ 303.4° C

RON 0.8571 6.8-106 0.9226 0.8905 0.9393 0.9390

MON 0.7471 0.7129 0.8592 0.8212 0.9105 0.8676

RON + MON 0.8318 0.8075 09175 0.8828 0.9480 0.9310
2

The plot of actual RON (ASTM D 2699) vs estimated RON (obtained from the Octane
Analyzer by using the linear calibration curve of nine gasoline fuels as the one in Fig. 3) is
shown in Figure 1. Only one sample (RON = 91.0) had a deviation of 0.8 RON. The devia-
tions of the other eight samples ranged from 0.1 10 0.5 RON which falls within the ASTM D
2699 95 percent confidence level of 0.7 RON. Clinton and Puzniak' reported that the Analyzer
was not sensitive to fuel composition changes resulting from different refining operations such
as alkylation. catalvtic. eracking. and reforming. However. new refining techniques have heen
imtroduced since the issuance of the report which may affect the response factors of the
analyzers,

b. RON vs Peak Area. The peak area was thought to he more directly proportional to
the released heat which the analyzer monitors, These results. however. did not show better cor-
relation with RON. It can be seen from the tvpical trace of detector response vs time in Figure 5
that the peaks are not exactly symmetrical and are more asymmetrical in the case of lower
RON fuel samples. These data show that peak area measurements did not give the equivalent
information a~ with peak height measurements. It is known? that changes in temperatures
change the linearity of the plot of the primary reference fuel’s (iso-octane and heptane mix-
tures) RON vx Octane Analvzer response. The correlation of RON vs peak area did not show
meaningful improvements by changes in the operating temperature of the Octane Analyzer.

" Clinton. R, M. and Puzniak. T. ). = Analyzing Process Octane On-Line,” Gulf Research & Development Compans Instromentation
Technologs July 19751 pp $7-50,

' “Operation and Maintenanee Mannal of Laboratary Octane Analyzer.” Fochorn Anahtical. 1980,
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¢..RON vs Induction Time. Although induction time did not give good correlation vs

N, the five “regular grade™ unleaded gasoline samples (90.8 1o 91. N) gave shorter in-
RON. the five “regular grad leaded gasol amples (90.8 10 91.7 RON) ¢ horter in
duction times than higher RON “premium grade™ unleaded and Gasohol fuels.

d. Gasohol and CRC High-Sensitivity Full-Boiling-Range Reference Fuels.
Neither Gasohol nor the CRC reference fuels correlated well with unleaded gasolines. The
greater differences in fuel compositions probably prohibited good correlation with unleaded
gasoline.

e. MON vs Analyzer’s Responses. The Analvzer responses (i.e.. peak height. peak
area. and induction time) were also correlated against motor vetane numher (MON). However.
the correlation coefficient calculation did not show any hetter here than did those obtained
with the RON (see Table 3). It may imply that preignition is less important in the higher speed
engine condition in which MON is determined.

f. Antiknock Index (RON + MON/2) vs Analyzer’s Responses. The correlation
coefficient of antiknock index vs Analyzer's responses was as good as the case of RON (see
Table 3). While only commercial unleaded gasoline was used for correlation, the correlation
coefficient of antikneck index v~ peak height was 0.9872 compared with 0.9894 of RON at
303.4° C reactor temperature.

II. EXPERIMENTS

The basic measurement consists simply of injecting a small quantity (10 pl) of sample
fuel from a 10-ml reservoir into a flowing air stream. The magnitude of the resultant exother-
mic event (e.g., partial oxidation and cool flame reactions) after the fuel-air mixture enters the
reaction is monitored by a thermocouple. The instrument is arranged so that the peak
temperatures generated during each single reaction are determined and individuslly recorded.
A typical trace detector response versus time for a gasoline sample is shown in Figure 5. A com-
plete analysis consists of six automatically controlled injection~ at 5-minute intervals. The
averages of these measurements (i.e.. induction time. peak height. and peak area) are then used
for correlation with the Research Octane Number values as determined by ASTM 1) 2699.
Peak temperatures have heen shown to exhibit a linear relationship with the RON value of the
gasoline. The reaction. however, becomes more severe (e.g.. increasing peak temperature) ax the
RON values decrease.

Becaunse of the limited number of fuels available for this investigation. it ‘was not in-
tended 1o establish the optimal operation conditions. Two reactor temperatures. 299.4° C and
303.4° C in the range of cool-flame temperature. were chosen. Air flow rate was set at 10 (ar-
bitrary unit) as suggested in the operating manual. The peak heights were obtained from the
typewriter terminal. The induction time and peak area were obtained from a Hewleut Packard
3390A Reporting Integrator which was connected to the direct-output terminal on the Octane
Analvzer. Both peak height and peak area were measured as relative units. Induction time was
measured from the beginning of the automatic process (push start) to the peak of the trace in
minutes,




Five samples of regular unleaded gasoline and five Gasohol fuels with known octane
ratings were obtained from US Army Fuels and Lubricants Research Laboratory (AFLRL). The
fuels and data were obtained courtesy of the Motor Vehicles Manufacturers Association
(MVMA). Four “premium™ or “super”™ unleaded gasolines and one Gasohol fuel were collected
by AFLRL at local gas stations and rated using the ASTM method.

IV. CONCLUSIONS
The results of this investigative study have generated the following conelusions:

a. The Octane Analvzer could he used to monitor the Research Octane Number (RON) of
gasoline fuels, More fuel samples with different RON are needed to define the correlation with
engine ratings more accurately. It is necessary to develop a set of three reference fuels for
establishing the calibration curve and optimal reaction conditions (e.g.. temperature. air flow
rate. ete.). This method. if developed. would be suitable for use in the field environment.

b. Antiknock index (RON + MON/2) of gasoline fuel may also be determined by the use of
the Octane Analvzer.

¢. Fuel composition changes resulting from different refinery processes could possibly af-
feet the Octane Analyzer's response. The sensitivity (RON-MON) of fuel was not found to he a

factor for the deviation from correlation line.

d. Gasohol and/or other oxygenated fuels will probably require a different calibration
curve with the existing Octane Analvzer.

e. The use of the Octane Analyzer is not intended to replace the existing engine rating
method but is an approach to use as a sereening test method.

11
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